Plant science articles

Fixed leaf image

Spectral Data and Thermotolerance in Plants

Thermotolerance can be studied by the variation in photosynthesis in response to environmental factors. Chlorophyll fluorescence has emerged as an important method of determining plant photosynthetic rates, as it is non-destructive, rapid, and accurate. With the help of small portable devices, scientists have been able to find the amazing strategies plants have developed to tolerate… Continue reading…

Cadmium Toxicity in Plants

Cadmium is a heavy, non-biodegradable metal that is toxic to plants, people, and animals. With increasing pollution and emission of cadmium, its levels in agricultural soils are increasing. The risk to humans is high due to consumption of cadmium-contaminated food. Modern applications of gas analysis and laser measurements are speeding up research in addressing the… Continue reading…

Leaf Area – How & Why Measuring Leaf Area is Vital to Plant Research

What is Leaf Area? It is easy to measure leaves, and they are also the parts of a plant most responsive to their environment. The combination of these two factors makes leaf area measurement extremely useful to scientists and growers. Besides, leaves are one of the main plant organs and are responsible for the productivity of… Continue reading…

Micronutrient Research Using Leaf Area & Photosynthesis Rates to Improve Crop Yields

With the pressure to increase food production, every agricultural practice that can be optimized for improving crop yield is under scrutiny; therefore, micronutrients, which are important for crop health and growth, are receiving more attention. Agronomists are increasingly studying different treatment methods to establish the easiest and most cost-effective way to improve micronutrient management. There… Continue reading…

Intro to Precision Forestry

Precision Forestry Improves Goods & Services Never before has the interest in preserving natural forests and efficient management of plantations been as great as the present. Demand for wood products is increasing. On the other hand, it is also evident that the remaining forests have to be protected to maintain our quality of life—the very… Continue reading…

Tree, Crop & Plant Stress – A Primer on Abiotic and Biotic Stressors

The natural conditions in which plants and trees grow are neither uniform nor controlled. Many changes or fluctuations, even if they are temporary, can have a negative impact on and stress plants. The factors which can lead to stress can be one of two types: abiotic or biotic. Stress can have serious repercussions on various… Continue reading…

Regulating Fertilizer Applications in Agriculture For Healthier Crops & Environment

Farm Fertilizer – A Double-Edged Sword The excessive use of fertilizers is one of the main causes of the environmental impact of industrial agriculture. The notion that more is better has caused more harm than good to farming, as well as the environment. Therefore, using the right amount of fertilizers is considered an important part… Continue reading…

The Importance of Leaf Area Index (LAI) in Environmental and Crop Research

Leaf Area Index (LAI), which is used as a measure in hundreds of studies on forests, crops, climate and the environment, is calculated as half the area of all leaves per unit area of ground. It is measured as the leaf area (m2 ) per ground area (m–2) and is unit-less. So, a plant with… Continue reading…

The Forest Canopy: Structure, Roles & Measurement

The Importance of Forest Canopy Structure If you are looking for a classic example of the circle of life, consider the forest canopy structure. A forest’s canopy structure is influenced by environmental and soil factors, and it also influences these factors in return. It is an aspect of forest ecology that is receiving more attention… Continue reading…

Forest & Plant Canopy Analysis – Tools & Methods

Canopy Analysis for Crop, Forest & Plant Research The range of applications of canopy cover analysis is truly astounding. Canopy analysis derives its usefulness from the vitality of the canopy. Many methods to measure canopy cover have been developed in the last 80 years to meet various objectives. Not surprisingly, there have been several comparisons… Continue reading…