Latest root-monitoring

Fixed leaf image

Advances in the Measurement of Root Turnover with Minirhizotron Technology

Root turnover rates are complex to measure as growth and death co-occur in plants. Minirhizotron is a standard method for estimating root turnover as it is non-destructive, rapid, and accurate. One challenge in the widespread use of minirhizotrons for root turnover is the lack of analysis methods to directly convert root scans to turnover estimation.… Continue reading…

Minirhizotron Systems for Root Disease Detection

Root diseases are a significant issue in reducing crop yields globally. The damage and symptoms caused by root diseases change morphology and growth dynamics that images and scans can detect. Minirhizotron systems can detect a wide range of root changes reflecting various levels of root disease severity, providing a novel detection method. Root diseases are… Continue reading…

How Wildfire Affects Tree Physiology

Wildfire effects on trees depend on fireline intensity and residence time and can occur from heat transfer or smoke. To understand how this process unfolds, we dive deep into the study of how wildfire affects tree physiology. Wildfire effects can be first-order or second-order and are evaluated based on carbon and water transport and are… Continue reading…

Fine Root Biomass Dynamics in Brackish Marsh Vegetation

In this article, we delve into a pivotal study conducted in the unique environment of a cool-temperate brackish marsh. The research, titled “Estimation of fine root biomass using a minirhizotron technique among three vegetation types in a cool-temperate brackish marsh,” offers crucial insights into the complex world beneath our feet – the intricate and often… Continue reading…

The Root Traits Reducing Landslide Susceptibility

Stabilization of slope hillsides is one of the crucial ecosystem functions of roots. Roots modify mechanical and hydrological soil properties to reduce landslide susceptibility, which is one of the main benefits of root traits reducing landslide susceptibility. Roots reinforce soil, provide structural support, deepen anchoring, and help to dry soils quickly after rains. Several underlying… Continue reading…

Root Systems and Resilience: Exploring the Minirhizotron’s Role in the Root2Res Project

We are thrilled to share this insightful video produced by Arvalis, which explores the critical role of root systems in addressing climate change. Utilizing our CI-600 Minirhizotron system, Arvalis has conducted pioneering research that delves into the heart of plant production. We extend our heartfelt gratitude to everyone involved in this project, from the researchers… Continue reading…

Guide: Connecting Root Traits to Functions

A growing interest in connecting root traits to functions has identified significant patterns. Several root traits can be involved in a single plant function, and the importance of trait contribution will differ depending on species, biomes, seasons, environment, and soil types. The widely studied morphological and architectural root traits are root length density, root diameter… Continue reading…

5 Ways Mycorrhizae Influence Forest Productivity

Ectomycorrhiza is commonly found in forests, especially in temperate and boreal regions. Arbuscular mycorrhizae, a type of endomycorrhiza, is more common in the tropics, grasslands, plantations, and deserts. A tree can have more than one type of mycorrhiza, each making a distinct contribution to its hosts. Mycorrhiza increases access and absorption of nutrients and water,… Continue reading…

Exploring Potato Genotypes’ Response to Drought Stress with minirhizotron: A Conversation on Research and Innovative Technology

From Maverick: “I would like to thank my thesis supervisor Laurent Leport and Brice Dupuis, and also the technician with whom I work, Gaetan Riot” In this intriguing conversation, we get an inside look into the research conducted by Maverick Gouerou, a researcher studying potato genotypes’ response to drought stress in field conditions. With the… Continue reading…

Root Systems’ Role in Ecosystems

Root systems make several vital contributions to ecosystems through their structure and functioning, influencing their environments and encouraging microbial growth and activities. Roots influence biogeochemistry through their involvement in carbon, nitrogen, and phosphorus nutrient cycling. They are also significant contributors to the soil carbon sink. Roots build soil structure, stability, and water-holding capacity and promote… Continue reading…