Latest root-monitoring

What is Root Architecture?

June 27, 2025 at 5:01 pm | Updated June 30, 2025 at 9:06 pm | 12 min read

The root system architecture is defined using root morphological, topological, and geometric parameters. Two classification systems developed by Yen et al. (1987) and Fitter et al. (1991) are widely used. Several other classifications for root architecture also exist. Root system forms vary between and within species and are based on the plant’s soil conditions at… Continue reading…

Fixed leaf image

Additional reading

How Minirhizotrons for Nematode Detection Improve Root Health Monitoring

Early studies used minirhizotron to understand how nematode-roots interaction impacts yield. Minirhizotrons have also been used to quantify nematode damage and cultivar selection. Minirhizotrons can show symptoms like root swelling and root trait changes at infection sites. Root studies have increased in number recently due to novel data collection techniques, such as imaging through minirhizotron… Continue reading…

What Are the Benefits of High-Density Orchards?

The dwarfing rootstocks that increase tree numbers in high-density orchards have a smaller and shallower root system. Several vital root traits like root length density (RLD), lower root number density (RND), and fewer and smaller fine roots are characteristics of dwarfing rootstocks. The root traits in dwarfing rootstocks lower the vegetative vigor but increase flower… Continue reading…

Understanding the Impact of High Temperatures on Crop Roots

Due to climate change-related high temperatures on crop roots, root architecture is altered. Roots change the carbohydrate/amino acid ratio and lipid metabolism to limit growth disruption and activate heat pathways. Temperature-induced hormone changes trigger signals to activate root responses to stress. Roots must also deal with climate change effects like drought, nutrient deficiency, salinity, and… Continue reading…

Understanding Drought Resistance Strategies: A Guide to Plant Adaptation

Drought Resistance Strategies include any plant mechanism that responds and adapts to drought, commonly called drought resistance. Plants use drought escape mechanisms to prevent encountering climatic established drought conditions by altering their lifespan. Drought avoidance strategies avoid the adverse impacts of mild and acute drought on cells by reducing plant water loss. Stress tolerance mechanisms… Continue reading…

Understanding Fine Root Dynamics: Key Insights and Methodologies

Fine roots have a diameter of 0.1–2 mm and are essential for nutrient acquisition for individual plants and carbon and nutrient cycling for ecosystems. Research shows fine roots are not a single group; root order determines form, anatomy, physiology, and function. Fine root age is another significant factor that influences functioning and dynamics. Though fine… Continue reading…

How Does the Rhizosphere Effect Influence Plant Growth and Soil Health?

The rhizosphere is the soil surrounding the plant root and soil interface. Root exudates, controlled by plant species, functional type, root traits, and biomes, can determine the biology, physics, and chemistry of the rhizosphere effect. The rhizosphere effect can enhance nutrient availability and defense at the plant level; carbon and nutrient cycling and possible bioremedial… Continue reading…