Latest menus

What We Learned About Roots in 2023

February 19, 2024 at 5:16 pm | Updated February 19, 2024 at 5:16 pm | 12 min read

Most studies in 2023 focused on root responses to agricultural practices to improve yield using fewer resources. Research into the basic science of roots and the influence of biotic and abiotic factors are the second significant areas of study. Fine roots are a particular area of focus, given their importance in nutrient and water uptake… Continue reading…

Fixed leaf image

Additional reading

Fine Root Biomass Dynamics in Brackish Marsh Vegetation

In this article, we delve into a pivotal study conducted in the unique environment of a cool-temperate brackish marsh. The research, titled “Estimation of fine root biomass using a minirhizotron technique among three vegetation types in a cool-temperate brackish marsh,” offers crucial insights into the complex world beneath our feet – the intricate and often… Continue reading…

The Root Traits Reducing Landslide Susceptibility

Stabilization of slope hillsides is one of the crucial ecosystem functions of roots. Roots modify mechanical and hydrological soil properties to reduce landslide susceptibility, which is one of the main benefits of root traits reducing landslide susceptibility. Roots reinforce soil, provide structural support, deepen anchoring, and help to dry soils quickly after rains. Several underlying… Continue reading…

Root Systems and Resilience: Exploring the Minirhizotron’s Role in the Root2Res Project

We are thrilled to share this insightful video produced by Arvalis, which explores the critical role of root systems in addressing climate change. Utilizing our CI-600 Minirhizotron system, Arvalis has conducted pioneering research that delves into the heart of plant production. We extend our heartfelt gratitude to everyone involved in this project, from the researchers… Continue reading…

How to Measure 7 Types of Stress in Plants Using Leaf Spectroscopy

Leaf Spectroscopy can measure seven common stresses that crops encounter. The crop leaf stressors are drought, nutrient deficiency, temperature, pests, diseases, salinity, and herbicides. Spectral changes due to physiological, anatomical, and chemical alterations triggered by stress are used in its measurement. Various methods are visual, multispectral, hyperspectral, thermal imaging, and light interaction. Yield depends on… Continue reading…

Comparing the Usability Between CID Bio-Science’s CI-600 Root Imager and an Inexpensive Endoscope

In the evolving field of agriculture, our tools can significantly influence the outcomes of our research and farming practices. Recently, a comparative study was undertaken to analyze the usability of the CID Bio-Science’s CI-600 Root Imager against a more budget-friendly option, the Depstech ds450 endoscope. Here, we delve into the findings presented in a poster… Continue reading…

How Rootstocks Affect Graft Hydraulic Balance

Rootstocks of different genotypes have varying hydraulic conductance. Rootstock’s hydraulic conductivity will influence a scion’s water relations. Rootstocks influence a scion’s hydraulic conductance through its root system size and vigor, hydraulic signaling, and direct signaling. Dwarfing and drought tolerance are the two impacts of a rootstock’s hydraulic conductance on grafted trees. Grafting scions to rootstocks… Continue reading…

Request a quote for a CID Bio-Science Product

Pricing and all related materials will be sent directly to your inbox.