SpectraVue Leaf Spectrometer CI-710s

Fast and highly portable plant $\mathcal{\&}$ crop data analyzed instantly in the field.

The newly redesigned SpectraVue Leaf Spectrometer gives plant researchers and agronomists the ability to collect, analyze or view plant data in real time. Using preloaded indices or by creating custom indices, Spectravue can measure the effects environmental variables have on nutrient and pigment quantification. Spectra can be used for the quantification of chemical concentrations, color analysis, and the study of photochemical reactions. Raw spectrum can also be used to deploy chemometric techniques such as PLS modeling.

A powerful spectrometer paired with a leaf probe attachment, on-board software and display screen, SpectraVue measures the transmission, absorption and reflection of light within a wide range of wavelengths that cover visible and Near Infra-Red (NIR) light.

Bio-Science.
Tools that work where you work.

FEATURES

- Upgraded with an all new spectrometer and wider spectral range $\mathbf{- 3 6 0 - 1 1 0 0 n m}$
- Handheld form factor with a 7 " $1024 \times$ 600 IPS touchscreen display
- Integrated PLS modeling
\square Measures reflectance, transmittance and absorbance simultaneously
Easy portability for remote operation
- A full suite of built in analysis software

APPLICATIONS

Agronomists use SpectraVue to analyze the effects of different nutrient applications.

Plant Physiologists use SpectraVue to evaluate environmental changes on plant stress.

Educators use SpectraVue to demonstrate spectral measurements of leaves.

Ecologists use SpectraVue to compare changes in pigments across elevations.

Five spectroscopic measurements can be performed: Intensity | Transmittance | Absorbance Reflectivity | Irradiance.

SPECIFICATIONS

\(\left.$$
\begin{array}{rl}\begin{array}{r}\text { Dimension } \\
\text { Weight }\end{array} & \begin{array}{l}220 \mathrm{~mm} \times 150 \mathrm{~mm} \times 30 \mathrm{~mm} \\
952 \mathrm{~g}\end{array}
$$

Operating Environment \& -30^{\circ} to 70^{\circ} \mathrm{C} storage,-10^{\circ} to

\& 50^{\circ} \mathrm{C} Operation, 0 \%-90 \%

noncondensing humidity\end{array}\right\}\)| | $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ |
| ---: | :--- |
| Minimum Leaf Size | $7^{\prime \prime} 1024 \times 600 \mathrm{IPS}$ Display |
| Display | English, Spanish |
| Languages | Reflectance, Transmittance
 and Absorbance |
| Measure Modes | 64 GB |

Detector Specifications

Detector	CMOS Linear Array
Wavelength Range	$360-1100 \mathrm{~nm}$
Pixels	2048 pixels
Pixel Size	$14 \mu \mathrm{~m} \times 200 \mu \mathrm{~m}$
Pixel Well Depth	100,000 electrons
Signal-to-Noise Ratio	$330: 1$ (at full signal)
AID Resolution	16 bit
Dark Noise	16 counts
Corrected Linearity	$>99.8 \%$
Sensitivity	337.500
Wavelength Data	$0.55-0.7 \mathrm{~nm}$
Increment	
Spectroscopic	
Grating	300 lines $/ \mathrm{mm}$, Slit $=55 \mu \mathrm{~m}$
Optical Resolution	2.4 FWHM in nm
Integration Time	$30 \mathrm{~ms}-60$ seconds
Dynamic Range	$3300: 1$
Stray Light	$0.2-1.0 \%$

Electronics

Power Supply	Two 18650 batteries \&USB-C
Battery Life	$3-4$ hours
Trigger Modes	Automatic \& Manual

